MTL4675

TEMPERATURE CONVERTER

THC or RTD input + Alarm

The MTL4675 converts a low-level dc signal from a temperature sensor mounted into a 4/20mA current for driving a load. Software selectable features include linearisation, ranging, monitoring, testing and tagging for all thermocouple types and 2-, 3- or 4-wire RTDs. (For thermocouple applications the SAF-CJC plug on terminals 1–3 includes an integral CJC sensor). Configuration is carried out using a personal computer. A single alarm output is provided and may be configured for high or low process alarm or to provide notice of early thermocouple failure.

SPECIFICATION

See also common specification

Number of channels

One

Signal source

THC types J, K, T, E, R, S, B or N to BS 60584 and XK

RTDs 2/3/4-wire platinum to BS 60751

Pt 100, Pt 500, Pt 1000

Cu-50 & Cu-53

Ni 100/500/1000 DIN 43760

Input signal range

-75 to +75mV, or 0 to 400Ω (0 to 1000Ω Pt & Ni sensors)

Input signal span

3 to 150mV, or 10 to 400Ω (10 to 1000Ω Pt & Ni sensors)

RTD excitation current

200µA nominal

Cold junction compensation

Automatic or selectable

Cold junction compensation error

≤ 1.0°C

Common mode rejection

120dB for 240V at 50Hz or 60Hz (500ms response)

Series mode rejection

40 dB for 50 Hz or 60 Hz

Calibration accuracy (at 20°C)

(includes hysteresis, non-linearity and repeatability)

Inputs: (500ms response)

mV/THC: $\pm 15\mu V$ or $\pm 0.05\%$ of input value

(whichever is greater)

RTD: $\pm 80 \text{m}\Omega$ **Output:** $\pm 11 \mu \text{A}$

Temperature drift (typical)

Inputs:

mV/THC:

± 0.003% of input value/°C

RTD: $\pm 7m\Omega/^{\circ}C$ **Output:** $\pm 0.6\mu A/^{\circ}C$

Example of calibration accuracy and temperature drift

(RTD input - 500ms response)

Span: 250Ω

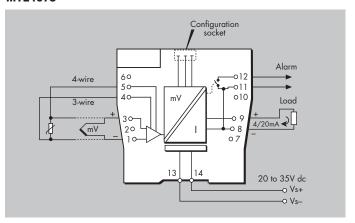
Accuracy: $\pm (0.08/250 + 11/16000) \times 100\%$

= 0.1% of span

Temperature drift: $\pm (0.007/250 \text{ x } 16000 + 0.6) \mu \text{A/}^{\circ}\text{C}$

 $= \pm 1.0 \mu A/^{\circ}C$

Safety drive on sensor failure


Upscale, downscale, or off

Early burnout

Early burnout detection for thermocouples (when selected)

Alarm trips when loop resistance increase is $> 50\Omega$

MTL4675

Output range

4 to 20mA nominal into 600Ω max. (direct or reverse)

Alarm output (configurable)

Relay ON in alarm, 250mA @ 35V max

Maximum lead resistance (THC)

600Ω

Response time

Configurable - 500 ms default (Accuracy at 100/200ms - contact MTL)

LED indicator

Green: power and status indication

Yellow: alarm indication, on when contacts are closed

Maximum current consumption (with 20mA signal)

50mA at 24V

Power dissipation within unit (with 20mA signal)

1.2W at 24V

Configurator

A personal computer running MTL PCS45 software with a PCL45USB serial interface.

The given data is only intended as a product description and should not be regarded as a legal warranty of properties or guarantee. In the interest of further technical developments, we reserve the right to make design changes

